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Abstract. We present a novel Dynamic Bayesian Network for pedestrian path
prediction in the intelligent vehicle domain. The model incorporates the pedes-
trian situational awareness, situation criticality and spatial layout of the environ-
ment as latent states on top of a Switching Linear Dynamical System (SLDS) to
anticipate changes in the pedestrian dynamics. Using computer vision, situational
awareness is assessed by the pedestrian head orientation, situation criticality by
the distance between vehicle and pedestrian at the expected point of closest ap-
proach, and spatial layout by the distance of the pedestrian to the curbside. Our
particular scenario is that of a crossing pedestrian, who might stop or continue
walking at the curb. In experiments using stereo vision data obtained from a ve-
hicle, we demonstrate that the proposed approach results in more accurate path
prediction than only SLDS, at the relevant short time horizon (1 s), and slightly
outperforms a computationally more demanding state-of-the-art method.

Keywords: intelligent vehicles, path prediction, situational awareness, visual fo-
cus of attention, Dynamic Bayesian Network, Linear Dynamical System.

1 Introduction

The past decade has seen a significant progress on video-based pedestrian detection. In
the intelligent vehicle domain, this has recently culminated in the market introduction
of active pedestrian systems that can perform automatic braking in case of dangerous
traffic situations. An area that holds major potential for further improvement is situa-
tion assessment. Current active pedestrian systems are designed conservatively in their
warning and control strategy, emphasizing the current pedestrian state (i.e. position)
rather than prediction, in order to avoid false system activations. Indeed, pedestrian path
prediction is a challenging problem, due to the highly dynamic nature of pedestrian mo-
tion, and systems need to react with limited computation time. Small deviations of, say,
30 cm in the estimated lateral position of the pedestrian can make all the difference, as
this might place the pedestrian just inside or outside the driving corridor.
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Fig. 1. Left: Pedestrian path prediction from an approaching vehicle, using situation criticality,
pedestrian awareness thereof, and positioning vs. curbside. Right: DBN as directed graph, un-
rolled for two time slices. Discrete/continuous/observed nodes are rectangular/circular/shaded.

This paper focuses on the accurate path prediction of pedestrians intending to later-
ally cross the street, as observed by a stereo camera on-board an approaching vehicle
(accident analysis shows that this scenario accounts for a majority of all pedestrian fatal-
ities in traffic [23]). We argue that the pedestrian’s decision to stop is for a large degree
influenced by three factors: the existence of an approaching vehicle on collision course,
the pedestrian’s awareness thereof, and the spatial layout of the environment. We there-
fore propose a Dynamic Bayesian Network (DBN), which captures these factors as latent
states on top of a Switching Linear Dynamical System (SLDS), thus controlling changes
in the pedestrian dynamics. We estimate situation criticality by the distance between
vehicle and pedestrian at the expected point of closest approach. Situational awareness
assesses whether the pedestrian has seen the vehicle at some point up to now (whether
the pedestrian currently sees the vehicle is estimated by means of the head orientation).
Spatial layout is captured by the distance of the pedestrian to the road curbside. See
Fig. 1 for an illustration of the scenario. The observables (shaded nodes in the graphical
model), i.e. distance at closest approach, pedestrian location, head orientation, curbside
location, are provided by external, state-of-the-art system components, for which we do
not make novelty claims.

All DBN parameters are estimated from annotated training data. In the experiments,
we collected data of pedestrians crossing in a supervised setting in traffic situations,
where the vehicle has an implicit right-of-way. It would be straightforward to apply
the approach to traffic situations where traffic lights or pedestrian crossings change
the right-of-way, by adding an (observed) context variable to the DBN. Our approach
can also be extended to additional motion types (e.g. pedestrian crossing the road in a
curved path) or, more generally, to robot navigation in human-inhabited environments.

2 Previous Work

In this section, we focus on techniques for pedestrian state estimation and path predic-
tion. For vision-based pedestrian detection, see recent surveys e.g. [10,12]. For pedes-
trian head/body orientation estimation, see e.g. [5,13,14].

State estimation in dynamical systems often involves the assumption that the under-
lying model is linear and that the noise is Gaussian, mainly due to the availability of the
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Kalman filter (KF) [7] as an efficient inference algorithm for such Linear Dynamical
Systems (LDS). In the intelligent vehicle domain, the KF is the most popular choice
for pedestrian tracking (see [30] for an overview). The state distribution of a LDS can
be propagated into the future without incorporating new observations to account for
missing measurements, or to perform path prediction. The Extended and Unscented KF
[24] can, to a certain degree, account for non-linear dynamical or measurement models,
but Switching LDS (SLDS) are needed for maneuvering targets that alternate various
motion types. A SLDS uses a top-level discrete Markov chain to select per time step
the system dynamics of the underlying LDS. However, exact inference and learning be-
comes intractable as the number of modes in the posterior distribution grows exponen-
tial over time in the number of the switching states [27]. One solution is to approximate
the posterior by samples using some Markov Chain Monte Carlo method [26,29]. Sam-
pling can also be used when extending the SLDS hierarchy, e.g. to impose distributions
on persistent state durations [26], or learn an SLDS mixture to cluster trajectories which
exhibit similar switching behavior [21]. However, sampling is impractical for online
real-time inference as convergence can be slow. Another solution is Assumed Density
Filtering (ADF) [6,25], which approximates the posterior at every time step with a sim-
pler distribution. ADF can be applied to discrete state DBNs, known as Boyen-Koller
inference [8], and more generally to mixed discrete-continuous state spaces with con-
ditional Gaussian posterior [22]. Interacting Multiple Model KF [7] is related to ADF
for SLDS, as it mixes the states of several KF filters running in parallel, and has been
applied for path prediction in the intelligent vehicle domain [18,30].

Whereas SLDSs can account for changes in dynamics, a switch in dynamics will only
be detected after sufficient observations contradict the currently predominant dynamic
model. If we wish to anticipate instead of react to changes in dynamics, a model should
include possible causes for change. These influences on pedestrian behavior can be
captured on an individual level using agent models, which have been used to reason
about pedestrian intent [4,19] (i.e. where does observed agent want to go), account for
preferences to move around certain regions of a static scene [19], and avoid collision
with other agents, as is done in social force models [2,16]. [32] enhanced social force
towards group behavior by introducing sub-goals such as “following a person”. The
related Linear Trajectory Avoidance model [28] for short-term path prediction uses the
expected point of closest approach to foreshadow and avoid possible collisions.

These agent-based models assume that pedestrians are fully aware of their environ-
ment [19,28]. However, this assumption does not hold when dealing with inattentive
pedestrians in the intelligent vehicle context. [15] presented a study on head turning
behaviors at pedestrian crosswalks regarding the best point of warning for inattentive
pedestrians. They used gyro sensors to record head turning and let pedestrians press a
button when they recognize an approaching vehicle. Apart from this sole study of Vi-
sual Focus of Attention (VFOA) in intelligent vehicle context we are aware of, VFOA
has been investigated in other application contexts. For example, [5] used a HOG-based
head detector to determine pedestrian attention for automated surveillance, and [3] com-
bined contextual cues in a DBN to model influence of group interaction on VFOA.

Within the class of non-parametric methods for path prediction and action classifi-
cation, [18] recently proposed two non-linear, higher order Markov models to estimate
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whether a crossing pedestrian will stop at the curbside, one using Gaussian Process Dy-
namical Models (GPDM), and one using Probabilistic Hierarchical Trajectory Match-
ing (PHTM). Both models use dense optical flow features in the pedestrian bounding
box, in addition to the positional information. The first approach learns a GPDM of the
dense flow for walking and stopping motion to predict future flow fields (and thereby
lateral velocity). PHTM matches feature vectors of flow and position to a hierarchically
organized tracklet database to extrapolate motion. Both approaches were shown to per-
form similar, and outperform the first-order Markov LDS and SLDS models, albeit at a
large computational cost ([18] reports GPDM/PHTM is three/two orders of magnitude
slower than KF). [20] considered the complementary case, whether a standing pedes-
trian will start to walk at the curbside. This only involved action classification and no
path prediction, and an infrastructure-based sensor setup (no on-board vehicle sensing).

3 Proposed Approach

We are interested in modeling the motion dynamics of a pedestrian from the viewpoint
of an approaching vehicle, in order to perform accurate path prediction. We consider
that non-maneuvering pedestrian movement is well captured by a LDS with a basic
motion model (e.g. constant position, constant velocity, constant turn rate) [7], and that
maneuvering pedestrian movement can be suitably represented by means of an SLDS.
Thus, the switching state indicates which basic motion model to use at any moment.

In this paper, we propose to condition the transition matrix of the SLDS switching
state on latent factors that are likely going to influence the pedestrian’s motion type.
In a scenario of a lateral crossing pedestrian, we argue that the pedestrian’s decision
to continue walking or to stop is largely influenced by the existence of an approaching
vehicle on collision course, the pedestrian’s awareness thereof, and the position of the
pedestrian with respect to the curbside.

Hence, we consider our main paper contribution a DBN which captures these three
factors as latent states on top of an SLDS (see current section). The proposed approach
goes beyond the state-of-the-art on pedestrian path prediction in vehicle context, which
has considered the pedestrian in isolation, i.e. context free [18,20,30], and agent models
that ignore a pedestrian’s perception and resulting situational awareness [4,19,28].

3.1 Graphical Model

The proposed DBN is shown in Fig. 1. We distinguish two sets of variables: those
relating to a SLDS (consisting of switching state M , latent position state X and asso-
ciated observation Y ) and those related to the scene context, i.e. spatial layout, situ-
ation criticality and the pedestrian’s awareness (consisting of discrete latent variables
Z = {SV,HSV, SC,AC}) that influence the SLDS switching state, and associated ob-
servables E =

{
HO,Dmin, DTC

}
. These variables are now discussed in turn. Details

on parameter estimation and computation of observables are given in Sec. 4.2.

SLDS. A SLDS contains a discrete switching state Mt, a continuous hidden state Xt,
and a linear observation of the state Yt with noise N (0, R) added. In our application, we
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consider that any moment can exhibit one of two motion types, walking (Mt = mw) and
standing (Mt = ms). While the velocity of any standing person is zero, different people
can have different walking velocities, i.e. some people move faster than others. Let xt

denote a person’s lateral position at time t (after vehicle ego-motion compensation) and
vt the corresponding velocity. Furthermore, vmw is the personal walking velocity of the
pedestrian. The motion dynamics over a period Δt can then be described as,

xt = xt−Δt + vtΔt+ εtΔt vt =

{
0 iff Mt = ms

vmw iff Mt = mw
(1)

Here εt ∼ N (0, Q) is zero-mean process noise that allows for deviations of the fixed
velocity assumption. We will assume fixed time-intervals, and from here on set Δt = 1.

We include the velocity vmw in the state of an SLDS, together with the position xt,
such that we can filter both as we obtain observations over time, i.e. Xt = [xt, v

mw
t ]�,

Xt = A(Mt)Xt−1 +

[
εt
0

]
εt ∼ N (0, Q) (2)

Yt = CXt + ηt ηt ∼ N (0, R) (3)

where the switching state Mt selects the appropriate linear state transformation A(m),

A(ms) =

[
1 0
0 1

]
A(mw) =

[
1 1
0 1

]
. (4)

Yt ∈ R is the observed lateral position with observation matrix C = [1 0]. The ini-
tial distribution on the state X0 expresses our prior beliefs about a pedestrian’s po-
sition and walking speed, as learned from the training data (see Sec. 4.2). From the
definition of the SLDS, we obtain the following conditional probability distributions
for the graphical model, P (Xt|Xt−1,Mt) = N (Xt|A(Mt)Xt−1, Q) and P (Yt|Xt) =
N (Yt|CXt, R).

Context. The transition probability of the SLDS switching state is conditioned on the
Boolean latent context variables Z . Although all these variables are discrete, during
inference the uncertainty propagates from the observables to these variables (and over
time), resulting in posterior distributions that contain values between 0 and 1. Each con-
textual configuration Zt = z is associated with a motion model transition probability
Pz , where P(·) indicates that the distribution is represented by a probability table, and
the subscript here denotes a table for each value z, such that

P (Mt|Mt−1, Zt = z) = Pz(Mt|Mt−1). (5)

The temporal transition of the context in Z is factorized by the probability tables

P (Zt|Zt−1) = P(HSVt|HSVt−1, SVt)× P(SVt|SVt−1)

×P(SCt|SCt−1)× P(ACt|ACt−1).
(6)

The latent Sees-Vehicle (SV ) variable indicates whether the pedestrian is currently
seeing the vehicle. Has-Seen-Vehicle (HSV ) indicates whether the pedestrian is aware
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of the vehicle, i.e. whether SVt′ = true for some t′ ≤ t. The transition probability of
HSVt encodes simply a logical OR between the Boolean HSVt−1 and SVt nodes:

P(HSVt|HSVt−1, SVt) =

{
1 iff HSVt = (HSVt−1 ∨ SVt)
0 otherwise.

(7)

The latent variable Situation-Critical (SC) indicates whether a situation is critical when
both, pedestrian and vehicle, continue with their current velocities. At-Curb (AC) in-
dicates if the pedestrian is currently at the distance from the curbside (as found in the
training data) where a person would stop if they choose to wait and postpone cross-
ing the road. The SV , SC and AC nodes furthermore depend on their value in the
preceding time step, which improves the temporal consistency of these latent variables.

Next we discuss observations Et which provide evidence for the latent context Zt,

P (Et|Zt) = P (HOt|SVt)× P (Dmin
t |SCt)× P (DTC|ACt). (8)

The Head-Orientation observable HOt serves as evidence for the Sees-Vehicle (SVt)
variable. We apply multiple classifiers to the head image region, each trained to detect
the head in a particular looking direction (for details, see Section 4.1), and HOt is then
a vector with the classifier responses. The values in this vector form different unnor-
malized distributions over the classes, depending on whether the pedestrian is looking
at the vehicle or not. However, if the head is not clearly observed (e.g. it is too far, or
in the shadow), all values are typically low, and the observed class distribution provides
little evidence of the true head orientation. We therefore model HOt as a sample from
a Multinomial distribution conditioned on SVt, with parameter vector psv,

P (HOt|SVt = sv) = Mult(HOt|psv). (9)

As such, higher classifier outputs count as stronger evidence for the presence of that
class in the observation. In the other limit of all zero outputs, HOt will have equal
likelihood for any value of SVt.

For Situation-Critical (SC), we consider the minimum distance Dmin between the
pedestrian and vehicle, if their paths would be extrapolated in time with fixed veloc-
ity [28]. While this indicator makes naive assumptions about the vehicle and pedestrian
motion, it is still informative as a measure of how critical the situation is, and thereby,
as part of our model, will lead to more accurate pedestrian path prediction. We define a
Gamma distribution over Dmin given SC, parametrized by shape a and scale b,

P (Dmin
t |SCt = sc) = Γ (Dmin

t |asc, bsc). (10)

To obtain evidence for At-Curb (ACt), we detect the curb ridge in the image, and
measure its lateral position near the pedestrian. These noisy measurements are filtered
with a constant position Kalman filter with zero process noise, such that we obtain an
accurate estimate of the expected curb position, xcurb

t . Distance-To-Curb,DTCt, is then
calculated as the difference between the expected filtered position of the pedestrian,
E[xt], and of the curb, xcurb

t . Note that for path prediction we can estimate DTC even
at future time steps, using predicted pedestrian positions, and accordingly predict AC
too. The distribution over DTCt given AC is modeled as a Normal distribution,

P (DTCt|ACt = ac) = N (DTCt|μac, σac). (11)
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3.2 Inference

The DBN is used in a forward filtering procedure to incorporate all available observa-
tions of new time instances directly when they are received. We have a mixed discrete-
continuous DBN where the exact posterior includes a mixture of |M |T Normal modes
after T time steps, hence exact inference is intractable. We therefore resort to Assumed
Density Filtering [22,25] for approximate inference, where after each time step the
found posterior is approximated by a simpler distribution. The procedure consists of
executing the following three steps for each time instance: predict, update, and collapse.

We will let P t(·) ≡ P (·|O1:t−1) denote a prediction for time t (i.e. before receiving
the observation Ot), and P̂t(·) ≡ P (·|O1:t) denote an updated estimate for time t (i.e.
after observing Ot). Finally, P̃t(·) is the collapsed or approximated updated distribution
that will be carried over to the predict step of the next time instance t+ 1.

Predict. To predict time t we use the posterior distribution of t − 1, which is factor-
ized into the joint distribution over the latent discrete nodes P̃t−1(Mt−1, Zt−1) and the

conditional Normal distribution P̃t−1(Xt−1|Mt−1) = N (Xt−1|μ̃(Mt−1)
t−1 , Σ̃

(Mt−1)
t−1 ).

First, the joint probability of the discrete nodes in the previous and current time steps
is computed using the factorized transition tables of Eq. (5) and (6),

P t(Mt,Mt−1, Zt, Zt−1) = P (Mt|Mt−1, Zt)P (Zt|Zt−1)P̃t−1(Mt−1, Zt−1). (12)

Then for the continuous latent state Xt we predict the effect of the linear dynamics
of all possible models Mt on the conditional Normal distribution of each Mt−1,

P t(Xt|Mt,Mt−1) =

∫
P (Xt|Xt−1,Mt)× P̃t−1(Xt−1|Mt−1) dXt−1. (13)

Applying Eq. (2), we find that the parametric form of (13) is the Kalman prediction step

N (Xt|μ(Mt,Mt−1)
t , Σ

(Mt,Mt−1)

t ) =
∫

N (Xt|A(Mt)Xt−1, Q)×N (Xt−1|μ̂(Mt−1)
t−1 , Σ̂

(Mt−1)
t−1 ) dXt−1.

(14)

Update. The update step incorporates the observations of the current time step to obtain
the joint posterior. For each joint assignment (Mt,Mt−1), the LDS likelihood term is

P (Yt|Mt,Mt−1) =

∫
P (Yt|Xt)× P t(Xt|Mt,Mt−1) dXt

= N (Yt|Cμ
(Mt,Mt−1)
t , Σ

(Mt,Mt−1)

t +R), (15)

where we make use of Eq. (3). Combining this with the prediction (Eq. (12)) and con-
textual likelihood (Eq. (8)), we obtain the posterior as one joint probability table

P̂t(Mt,Mt−1, Zt, Zt−1) ∝ P (Yt|Mt,Mt−1)P (Et|Zt)P t(Mt,Mt−1, Zt, Zt−1) (16)
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where we normalize the r.h.s. over all possible (Mt, Zt,Mt−1Zt−1) combinations to
obtain the distribution on the l.h.s. The posterior distribution over the continuous state,

P̂t(Xt|Mt,Mt−1) ∝ P (Yt|Xt)× P t(Xt|Mt,Mt−1)

= N (Xt|μ̂(Mt,Mt−1)
t , Σ̂

(Mt,Mt−1)
t ) (17)

has parameters
(
μ̂
(Mt,Mt−1)
t , Σ̂

(Mt,Mt−1)
t

)
for the |M |2 possible transition conditions,

which are obtained using the standard Kalman update equations.

Collapse. In the third step, the state of the previous time step is marginalized out from
the joint posterior distribution, such that we only keep the joint distribution of variables
of the current time instance, which will be used in the predict step of the next iteration.

P̃t(Mt, Zt) =
∑

Mt−1

∑

Zt−1

P̂t(Mt,Mt−1, Zt, Zt−1) (18)

Likewise, we approximate the |M |2 Normal distributions by just |M | distributions,

P̃t(Xt|Mt) =
∑

Mt−1

P̂t(Xt|Mt,Mt−1)× P (Mt−1|Mt) = N (Xt|μ̃(Mt)
t , Σ̃

(Mt)
t ) (19)

Here, the parameters
(
μ̃
(Mt)
t , Σ̃

(Mt)
t

)
are found by Gaussian moment matching [22,25],

and P (Mt−1|Mt) through marginalizing and normalizing P̂t(Mt,Mt−1, Zt, Zt−1).

4 Experiments

4.1 Dataset and Observations

Our dataset consists of 58 sequences recorded using a stereo camera (baseline 22 cm,
16 fps, 1176×640 pixels) mounted behind the windshield of a vehicle1. All sequences
involve single pedestrians with the intention to cross the street, but feature different
situation criticalities (critical2 vs. non-critical), pedestrian situational awareness (ve-
hicle seen vs. vehicle not seen) and pedestrian behavior (stopping at the curbside vs.
crossing). Due to the focus on potentially dangerous situations, both driver and pedes-
trian were instructed during recording sessions. The dataset contains four different male
pedestrians and eight different locations. Each sequence lasts several seconds (min /
max / mean: 2.53 s / 13.27 s / 7.15 s), and pedestrians are generally unoccluded, though
brief occlusions by poles or trees occur in three sequences.

Positional ground truth (GT) is obtained by manual labeling of the pedestrian bound-
ing boxes and computing the median disparity over the upper pedestrian body area us-
ing dense stereo [17]. Analysis of crossing trajectories shows an mean gait cycle of

1 The dataset, including annotations, will be made available for non-commercial, research pur-
poses within a year after publication. Please contact the last author.

2 N.B. None of the experiments exposed pedestrians to danger; “critical situation” refers to a
theoretic outcome where both the approaching vehicle and pedestrian would not stop.
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17.3 frames (1.0 s) with 1.6 frames (0.1 s) standard deviation. GT for contextual ob-
servations is obtained by labeling head orientation (16 discrete clock-wise increasing
orientation angles). Sequences where potentially dangerous situations occur, i.e. when
either pedestrian or vehicle should stop to avoid a collision, have been labeled as crit-
ical. Sequences are further labeled with event tags and time-to-event (TTE, in frames)
values. For stopping pedestrians, TTE = 0 is when the last foot is placed on the ground
at the curbside, and for crossing pedestrians at the closest point to the curbside (before
entering the roadway). Frames before/after an event have negative/positive TTE values.

A HOG/linSVM pedestrian detector [9] provides measurements, given region-of-
interests supplied by an obstacle detection component using dense stereo data. The
resulting bounding boxes are used to calculate a median disparity over the upper pedes-
trian body area. The vehicle ego-motion compensated lateral position in world coordi-
nates is then used as positional observation Yt.

For the observed head orientation HOt, the angular domain of [0◦, 360◦) is split into
eight discrete orientation classes of 0◦, 45◦, · · · , 315◦. We trained a detector for each
class [13], i.e. f0, · · · , f315, such that the detector response fo(It) is the strength for
the evidence that the observed image region It contains the head in orientation class o.
For each detector we used neural networks with local receptive fields [33] trained in a
one vs. rest manner. We used a separate training set with 9300 manually contour labeled
head samples from 6389 gray-value images with a min./max./mean pedestrian height of
69/344/122 pixels (c.f. [14]). For additional training data, head samples were mirrored
and shifted, and 22109 non-head samples were generated in areas around heads and
from false positive pedestrian detections. For detection, we generate candidate head
regions in the upper pedestrian detection bounding box from disparity based image
segmentation. The most likely head image region I� is selected from all candidates
based on disparity information and detector responses. Before classification, head image
patches are rescaled to 16×16 px. The head observationHOt = [f0(I

�
t ), · · · , f315(I�t )]

contains the confidences of the selected region.
The expected minimum distance Dmin between pedestrian and vehicle is calculated

as in [28] for each time step based on current position and velocity. Vehicle speed
is provided by on-board sensors, for pedestrians the first order derivative is used and
averaged over the last 10 frames. For DTC, the curbside is detected with a basic Hough
transform [11]. The image region of interest is determined by the specified accuracy of a
state-of-the-art vehicle localization approach (GPS+INS) using map data [31]. Y curb

t is
then the mean lateral position of the detected line back-projected to world coordinates.

4.2 Parameter Estimation

All distribution parameters are estimated from annotated training data. For stopping
sequences, the GT switching state is defined as Mt = ms at moments with TTE >= 0,
and as Mt = mw at all other moments, crossing sequences always have Mt = mw.
From the GT at time t = 0 we estimate the position and walking speed prior for X0.
Process noise Q is estimated from the differences of the estimated mean walking speed
and a pedestrian’s true walking speeds, and observation noise N (0, R) is estimated by
the difference between GT and measured positions.
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Considering head observationHO, we assume pedestrians recognize an approaching
vehicle (GT label SVt = true) when the GT head direction is in a range of ±45◦ around
angle 0◦ (head is pointing towards the camera), and do not see the vehicle (SVt = false)
for angles outside this range (future human studies could allow a more precise threshold,
or provide an angle distribution, the study in [15] only reported the frequency of head
turning). For each ground truth label sv, we estimate the orientation class distributions
psv by averaging the class weights in the corresponding head measurements. For the
observation Dmin, we define per trajectory one value for all SCt labels (∀tSCt = true
for trajectories with critical situations, ∀tSCt = false otherwise), and estimate the
distributions Γ (Dmin|asc, bsc). The distributions N (DTCt|μac, σac) are estimated
from GT curb positions and At-Curb labels, which are set to ACt = true only at time
instances where−1 ≤ TTE ≤ 1 when crossing, and TTE ≥ −1 when stopping. Finally,
it is straightforward to estimate prior and transition probability tables for the discrete
contextual quantities SV , AC from their GT labels. The same applies to the dynamic
switching state M , conditioned on HSV , SC and AC. The transition probability for
HSV is a logical OR, as described in 3.1. Since we only set SC labels once per se-
quence, we fix the SC transition probability to 1/100 for changing state.

4.3 Evaluation

The dataset is divided into five sub-scenarios, listed in Table 1. Four sub-scenarios rep-
resent “normal” pedestrian behaviors (e.g. the pedestrian stops if he is aware of a critical
situation and crosses otherwise). The fifth sub-scenario is anomalous, since the pedes-
trian crosses even though he is aware of the critical situation. We compare our proposed
DBN with full context, referred to as SC+HSV+AC, to model variations with less con-
text, and to a fixed velocity Kalman Filter with acceleration noise (see caption Table 1).

Leave-one-out cross-validation is used to separate training and test sequences, though
sequences from the anomalous sub-scenario are excluded from the training data. For
each time t with state Xt, we create a predictive distribution for Xt+tp at tp time steps
in the future by iteratively applying the Predict and Collapse steps (see Sec. 3.2), and
only Update with the DTC likelihood (Eq. (11)) using the predicted positions,

P tp|t(Xt+tp) ≡ P (Xt+tp |Y1:t). (20)

We define two performance metrics for a sequence, namely the Euclidean distance be-
tween lateral predicted expected position xt+tp and lateral GT position Gt+tp , and the
log likelihood of G under the predictive distribution:

error(tp|t) = |E [
P tp|t(xt+tp)

]−Gt+tp | (21)

predll(tp|t) = log
[
P tp|t(Gt+tp)

]
(22)

Note that the predictive log likelihood of [1] corresponds to predll(0|t).

Comparison of Model Variations. The results in Table 1 show the predictive log like-
lihood predll for tp = 16 time steps (∼ 1 s) in the future, averaged over the second up
to TTE = 0 when the pedestrian reaches the curb. In the first three normal sub-scenarios,



628 J.F.P. Kooij et al.

Table 1. Prediction log likelihood of the GT pedestrian position for tp = 16 frames (∼ 1 s) ahead,
for different sub-scenarios (rows) and models (columns), for TTE ∈ [−15, 0]. The first four sub-
scenarios contain “normal” pedestrian behavior. The fifth case is anomalous (lower likelihood is
better). Model variations (best SLDS variant marked in bold): full context (SC+HSV+AC), no
curb (SC+HSV), only head (HSV), only criticality (SC), no context (SLDS), KF (LDS).

Sub-scenario SC+HSV+AC SC+HSV HSV SC SLDS LDS
non-critical, vehicle not seen, crossing -0.61 -0.53 -0.52 -0.59 -0.59 -1.90
non-critical, vehicle seen, crossing -0.53 -0.45 -0.46 -0.47 -0.49 -1.93

critical, vehicle not seen, crossing -0.48 -0.34 -0.17 -0.59 -0.33 -1.88
critical, vehicle seen, stopping -0.33 -0.70 -1.13 -0.80 -1.26 -1.88
critical, vehicle seen, crossing -0.90 -0.27 -0.15 -0.25 -0.13 -1.88

all five SLDS-based models perform similarly, clearly outperforming the LDS (which
has similar low likelihoods across the board, i.e. it is unspecific for any sub-scenario).
However, in the fourth sub-scenario (pedestrian sees the vehicle in a critical situation
and stops), the simpler DBNs have low predictive likelihoods, except for our proposed
model. Without the full context, the other models are not capable to predict if, where
and when the pedestrian will stop. For the anomalous fifth sub-scenario, only the pro-
posed model results in lower likelihood than for normal behavior, which is a useful
property for anomaly detection. A future driver warning strategy could benefit from the
more accurate path prediction of our SC+HSV+AC model in high likelihood situations,
whereas falling back to simpler models/strategies when anomalies are detected.

Fig. 2 illustrates a sequence from the stopping sub-scenario (fourth row in Table 1),
with a snapshot just before (TTE = −20) and after (TTE = −9) the pedestrian be-
comes aware of the critical situation. At TTE = −20, the predicted distributions of
all models are close together and indicate that the pedestrian continues walking (the
LDS does so with high uncertainty). At TTE = −9, the mean position predictions of
the LDS are furthest away from the GT (still within one std.dev. because of high un-
certainty). The SLDS-only prediction shows a comparatively low uncertainty, but the
predicted means have a high distance to the GT (not within one std.dev.). Predictions
of the SC+HSV model are closer to the true positions, since it captures the situational
awareness of the pedestrian and therefore assigns a higher probability, compared to
SLDS, to switch to the standing model ms. The SC+HSV+AC model makes the best
predictions as it also anticipates where the pedestrian will stop, namely at the curbside.

In the context of action classification, Fig. 3 shows for various model variations,
(left) the standing probability P̃t(Mt = ms), and (right) the error(tp|t) for predictions
made tp = 16 frames ahead, plotted against the TTE. In the first sub-scenario (top row),
the pedestrian crosses in a critical situation without seeing the approaching vehicle. All
models have a very low stopping probability, but since a few sequences have ambiguous
head observations, our proposed model does not exclude the possibility that the vehicle
has been seen. This translates to a higher stopping probability near the curb, and to a
higher error of the average prediction for a short while. Still, the model recuperates as
the pedestrian approaches the curb and shows no sign of slowing down, which informs
the model that the pedestrian did not see the vehicle (i.e. joint inference also means that
observed motion dynamics can disambiguate low-level head orientation estimation). In
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Fig. 2. Example of a pedestrian that will stop at the curb after becoming aware of a critical
situation. Predictions are made tp = 16 (∼ 1 s) time steps ahead from different times t. Top left:
Pedestrian with head detection bounding box (white), tracking bounding box (green), collapsed
predicted distribution of the SC+HSV+AC model (blue ellipses show one and two std.dev.) and
curb detection (blue line) made at time t = 12 (TTE = −20). Top center: The pedestrian
became aware of the critical situation, shown is time step t = 23 (TTE = −9). Bottom left:
Predictions (mean and std.dev.(shaded)) made at t = 12 (dashed green line and diamond) for
the lateral position at time t + tp (red diamond indicates the GT at t + tp) . Vertical black line
denotes the event. Black dots indicate position measurements, the black line the GT positions.
Colored lines are predicted positions by different models. Bottom center: Predictions of the lateral
position at t + tp made from t = 23. Right: Inferred marginal distributions for the latent binary
variables in the SC+HSV+AC model, using gray scale coded probability from 0 (black) to 1
(white). Horizontal axis is time. Variable labels are True and False, and walking and standing.

the second sub-scenario (bottom row), the pedestrian is aware of the critical situation
and stops at the curb. Now, all models show an increasing stopping probability towards
the event point. In a few scenarios, the SLDS switches too early to the standing state,
reacting to perceived de-acceleration (noise) of the pedestrian walking, hence the high
std. dev. of the SLDS over all sequences early on. However, on average the SLDS as-
signs a higher probability to standing (> 0.5) than walking after the pedestrian has
already reached the curb (TTE > 0). It can only react to changing dynamics, but not
anticipate it. Our proposed model, on the other hand, gives the best action classification
(highest stopping probability at TTE = 0). It anticipates the change in motion dynam-
ics a few frames earlier as the SLDS, benefiting from the combined knowledge about
situation criticality and spatial layout. Further, the knowledge about the spatial layout
helps to keep the standing probability low while the pedestrian is still far away from the
curb. The model with limited context information ends up in between proposed model
and SLDS. Accordingly, our proposed model has the lowest prediction error (bottom
right plot). Averaged over the sequences, it outperforms the baseline SLDS model by
up to 0.39m (at TTE = 1) and the SC+HSV model with up to 0.16m (at TTE = −10).
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critical, vehicle not seen, crossing

critical, vehicle seen, stopping

Fig. 3. Stopping probability (left) and lateral prediction error (right) when predicting 16 time
steps (∼ 1 s) ahead in the two critical sub-scenarios. Top: Pedestrian is not aware of the critical
situation and crosses. Bottom: Pedestrian is aware of the critical situation and stops. Shown are
mean and standard deviation (shaded) of each measure over all corresponding sequences, for
our proposed model (SC+HSV+AC), an intermediate model without spatial layout information
(SC+HSV), the baseline SLDS model without contextual cues, and a LDS.

Idealized Vision Measurements. To investigate how the vision components affect
performance, we train and test using GT as idealized measurements for pedestrian lo-
cation, curb location, and head orientation. We find that the lateral pedestrian and curb
measurements are sufficiently accurate: GT does not notably change the results. Ideal
head measurements alter the five sub-scenario scores of the SC+HSV+AC model w.r.t.
Table 1 to −0.57, −1.08, −0.32, −0.12 (“normal” cases), and to −3.67 (anomalous
case). Note that predictions became more accurate for critical sub-scenarios, less accu-
rate in the second sub-scenario (non-critical, vehicle seen, crossing) at moments that are
deemed critical since seeing the vehicle implies stopping, and that the likelihood of the
anomalous fifth sub-scenario is still the lower than all other sub-scenarios, as expected.

Comparison with PHTM. Fig. 4 shows a comparison of the mean prediction error
of our proposed model with the state-of-the-art PHTM model [18] which uses optical
flow features and an exemplar database, on the four “normal” sub-scenarios. On two of
these sub-scenarios (upper right and lower left plots) the proposed model outperforms
PHTM slightly, both in terms of mean and variance, in particular on the arguably most
important sub-scenario for a pedestrian safety application: critical, vehicle not seen,
crossing. On the last sub-scenario (lower right plot) PHTM performs slightly better.

Computational Costs. The computational costs of the various approaches were as-
sessed on standard PC hardware (Intel Core i7 X990 CPU at 3.47GHz), see Table 2. We
differentiate between the computational cost for obtaining the observables and that for
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non-critical, vehicle not seen, crossing non-critical, vehicle seen, crossing

critical, vehicle not seen, crossing critical, vehicle seen, stopping

Fig. 4. The plots show the lateral prediction error of our proposed model and the PHTM model
in various sub-scenarios. The lines show the avg. error over all sequences in a sub-scenario, after
aligning the results by their TTE values, and the shaded region shows the std. dev. of the error.

Table 2. Computational costs for the different models per frame (avg. per frame, in ms)

Approach Observables State est. & pred. Total
SC+HSV+AC 160 40 200
SLDS 60 10 70
LDS 60 0.4 60
PHTM 70 600 670

performing state estimation and prediction. In terms of observables, all approaches used
positional information derived from a dense stereo-based pedestrian detector (about
60ms). The additional observables used in our proposed SC+HSV+AC model (e.g.
head orientation and curb detection) cost an extra 100ms to compute. PHTM on the
other hand requires computing dense optical flow within the pedestrian bounding box
(about 10ms). But, as seen in Table 2, the proposed model is one order of magnitude
more efficient than PHTM when considering only the state estimation and prediction
component (this even though PHTM implements its trajectory matching by an efficient
hierarchical technique [18]), and it is three times more efficient in total.

5 Conclusions

We presented a novel model for pedestrian path prediction in the intelligent vehicle
domain. The model, a DBN, incorporated the pedestrian situational awareness, situa-
tion criticality and spatial layout of the environment (curbside) as latent states on top
of an SLDS, thus controlling changes in the pedestrian dynamics. The proposed model
overall outperformed simpler models with or without partial contextual cues by predict-
ing GT pedestrian positions more accurate (up to 0.39m compared to the SLDS when
predicting ∼ 1 s ahead) and with higher likelihood in situations similar to those in
the training set. In atypical situations, it predicted GT pedestrian position with a lower
likelihood, a desirable property for anomaly detection.
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We show that the proposed approach even slightly outperformed a state-of-the-art
PHTM approach at less than a third of computational cost. These two approaches do
not stand directly in competition, however, as they use different sources of informa-
tion that could conceivably be combined. Further work involves the incorporation of
additional scene context (e.g. traffic light, pedestrian crossing) and the extension of the
basic motion types of the SLDS (e.g. turning). We are encouraged that the presented
context-based models can play an important role in future generation driver warning
and vehicle control strategies that save pedestrian lives.
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